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A b s t r a c t

Introduction: Infarct size (IS) is a fundamental determinant of left-ventricular (LV) remodelling (end-systolic and end-diastolic 
volume change, ΔESV, ΔEDV) and adverse clinical outcomes after myocardial infarction (MI). Our prior work found that myocardial 
uptake of transcoronary-delivered progenitor cells is governed by IS.

Aim: To evaluate the relationship between IS, stem cell uptake, and the magnitude of LV remodelling in patients receiving 
transcoronary administration of progenitor cells shortly after MI.

Material and methods: Thirty-one subjects (age 36–69 years) with primary percutaneous coronary intervention (pPCI)-treat-
ed anterior ST-elevation MI (peak CK-MB 584 [181–962] U/l, median [range]) and sustained left ventricle ejection fraction (LVEF)  
≤ 45% were studied. On day 10 (median) 4.3 × 106 (median) autologous CD34+ cells (50% labelled with 99mTc-extametazime) were 
administered via the infarct-related artery (left anterior descending). ΔESV, ΔEDV, and mid circumferential myocardial strain (mCS) 
were evaluated at 24 months.

Results: Infarct mass (cMRI) was 57 [11–112] g. Cell label myocardial uptake (whole-body γ-scans) was proportional to IS (r = 
0.62), with a median 2.9% uptake in IS 1st tercile (≤ 45 g), 5.2% in 2nd (46–76 g), and 6.7% in 3rd (> 76 g) (p = 0.0006). Cell uptake in 
proportion to IS attenuated the IS-ΔESV (p = 0.41) and IS-ΔEDV (p = 0.09) relationship. At 24 months, mCS improved in IS 2nd tercile 
(p = 0.028) while it showed no significant change in smaller (p = 0.87) or larger infarcts (p = 0.58).

Conclusions: This largest human study with labelled CD34+ cell transplantation shortly after MI suggests that cell uptake (pro-
portional to IS) may attenuate the effect of IS on LV adverse remodelling. To boost this effect, further strategies should involve cell 
types and delivery techniques to maximize myocardial uptake.

Key words: cell therapy, infarct size, circumferential strain, myocardial infarction, left ventricular remodelling.

S u m m a r y

Infarct size (IS) governs left-ventricular end-systolic and end-diastolic volume changes after acute myocardial infarction, 
and it is a strong predictor of adverse long-term prognosis. Therefore, it would be clinically desirable to inhibit the effect of 
infarct size on left-ventricular remodelling. An important role might be played by cell-based therapies that have the potential 
to enhance cardiac repair. However, very few studies have used labelled cells, and cohorts have been very small; thus, the 
impact of progenitor cell myocardial uptake on the relationship between infarct size and left ventricular remodelling has not 
been explored. In the largest study to date with labelled stem cells in ST-segment elevation myocardial infarction, we found 
that cell uptake (occurring in proportion to IS) attenuated the effect of infarct size on ΔESV and ΔEDV at 2 years. Further-
more, we found a significant improvement in left ventricle systolic function expressed by circumferential strain on cardiac 
magnetic resonance imaging, which was particularly relevant in the medium tercile of large-size infarcts. To boost the effect 
that we identified, further cell-based strategies to stimulate cardiac repair in acute myocardial infarction should involve cell 
types and delivery techniques to maximize myocardial uptake.
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Introduction
Despite progress in medical and device therapies, 

post-myocardial infarction (MI) heart failure continues to 
be associated with reduced quality of life and poor progno-
sis [1]. The number of patients with ischaemic heart failure 
is prognosed to significantly grow in the next decades [2, 
3], prompting development of novel therapeutic strategies 
[3]. Cell-based approaches receive increasing attention [4, 
5] and attract significant research efforts [6–14].

There is ample evidence that infarct size (IS) is a fun-
damental determinant of left-ventricular (LV) adverse re-
modelling (i.e. adverse change in LV geometry after MI) 
[15–18]. LV adverse remodelling is typically expressed 
as an increase in end-systolic and end-diastolic volumes 
over time [19]. Another important index of the degree of 
ischaemic myocardial damage and reduced function over 
time is circumferential myocardial fibre shortening/defor-
mation (strain) [20, 21]. Recent evidence shows that cir-
cumferential strain (CS) may add an important diagnostic 
and prognostic value over that of conventional (i.e. LV vol-
ume-dependent) parameters of LV remodelling [22, 23].

Aim
Our prior work demonstrated that IS determines the 

magnitude of myocardial uptake of transcoronary-deliv-
ered progenitor cells [24] consistent with biologically rele-
vant mechanism(s) governing the relationship between IS 
and cell uptake [24]. Presently, we have evaluated the rela-
tionship between IS, progenitor cell uptake, and the mag-
nitude of LV remodelling in patients receiving transcoro-
nary administration of progenitor cells shortly after MI.

Material and methods
The study involved consecutive patients with ST-seg-

ment elevation myocardial infarction (STEMI) (anterior 
location, left anterior descending artery, LAD, as the in-
farct-related artery), treated with primary percutaneous 
coronary intervention (pPCI) and with persistent left 
ventricle ejection fraction (LVEF) ≤ 45% by echocardiog-
raphy (Simpson method) and cardiac necrosis biomark-
er level consistent with major myocardial loss (peak 
troponin I  (TnI) level ≥ 50 ng/ml and/or peak creatine 
kinase-myoglobin binding (CK-MB) ≥ 150 U/l with no 
contraindication to cardiac magnetic resonance imaging 
(cMRI). Patients were recruited to meet the volume goal 
of at least 30 subjects [24]. Bone marrow (BM) aspiration 
was performed 7 to 12 days (median 10 days) after pPCI. 
On the morning of the day of cell administration, BM 
(80–120 ml) was harvested from iliac crest. Mononuclear 
cells were separated with Ficoll [10, 25]. Total amount of 
0.7–9.9 (median 4.3 × 106) autologous CD34+ cells (50% 
99mTc-extametazime-labeled), including 0.3–6.8 (median 
2.1 × 106) CD34+CXCR4+ cells, were administered intra-
coronarily (non-occlusive technique) via the infarct-re-
lated artery (LAD). Myocardial perfusion was evaluated 

by single-photon emission computerized tomography 
(SPECT) 36 to 48 h before cell delivery. Myocardial uptake 
of the labelled CD34+CXCR4+ cells was assessed 1 h af-
ter transcoronary cell implantation by whole-body planar 
γ-camera scan. Cell uptake was quantified by the number 
of counts in the cardiac region of interest in relation to 
total counts on whole-body images [24, 26].

Gadolinium-enhanced cMRI (Siemens Magnetom 
Sonata 1.5 T) with image acquisition ≤ 24 h before cell 
transfer was used as the reference technique for the 
detection and assessment of MI size and parameters of 
remodelling (LV end-diastolic volume (EDV), LV end-sys-
tolic volume (ESV)). CMR parameters were analysed with 
dedicated software (QMass MR 7.5; Medis, Leiden, the 
Netherlands) by agreement of 2 observers with at least 
5 years of experience in core lab cMRI analysis. Late gad-
olinium-enhanced (LGE) images were obtained 10 to  
15 min after a peripheral bolus injection of 0.2 mmol/kg  
Gd-DTPA [24]. Gadolinium late-enhanced total infarct 
mass/size (IS, cMRI) included both the core zone (defined 
as signal intensity (SI) ≥ 50% of the maximal myocardial 
SI) and the infarct border zone (defined as the myocar-
dium with SI greater than the peak SI in remote normal 
myocardium but < 50% of maximal SI of the high SI myo-
cardium outward to the LGE zone). As a  result, total IS 
was defined as total myocardium with signal intensity 
greater than SI peak in remote normal myocardium [24].

Furthermore, mid CS (mCS) analysis was conducted 
as previously described [21, 27]. In brief, using Diogenes 
CMR-FT software (TomTec Imaging Systems, Munich, Ger-
many), peak systolic circumferential strain at infarct zone 
(LV mid zone) was measured in LV short axis views at mid 
for baseline and follow-up. Segmental strain analysis was 
not performed for apical segments due to low reproduc-
ibility, and not for basal segments due to the absence 
of infarct tissue. CS was measured in mid anteroseptal, 
anterior, and anterolateral segments if there were LGE 
present (defined as in core or border infarct zone above). 
The MRI measurements were taken by a  consensus of  
2 independent, experienced cMRI analysts blinded to the 
SPECT and clinical data. cMRI imaging, with measure-
ments of EDV, ESV, and mCS, was repeated at 24 months. 
Change in EDV (ΔEDV) and ESV (ΔESV) was calculated 
along with a  comparison of mCS at baseline and at  
24 months. To evaluate the relationship between IS, pro-
genitor cell uptake, and the magnitude of LV remodel-
ling, IS was categorized into terciles (g). The values of 
median cell uptake along with ΔESV, ΔEDV, and the mCS 
data were calculated in each IS tercile. The study was 
approved by the Local Ethics Committee, and all partici-
pants provided informed written consent.

Statistical analysis
Variables were presented as numbers and percentages, 

mean ± standard deviation (SD), or median and interquar-
tile range, as appropriate. Data distribution was assessed 
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via the Shapiro-Wilk test. Categorical variables were com-
pared using Pearson’s c2 test or Fisher’s exact test. Com-
parison of variables between terciles was performed using 
ANOVA. Differences between 2 groups (baseline versus 
24-months follow-up) were compared using the Wilcox-
on test. Spearman’s correlation coefficients were used to 
determine trends. A p-value < 0.05 was considered statis-
tically significant. All statistical analyses were performed 
with JMP 15.2 (SAS Institute Inc., Cary, NC, USA, 2020).

Results
Clinical and laboratory characteristics of the study 

group are shown in Table I. Median peak TnI level was 
137 ng/ml (58.3–356 ng/ml), and median peak CK-MB 
was 584 IU/l (181–962 IU/l). Median values of LVEF were 
37% (23–44%) by echocardiography, 34% (17–48%) by 
gated SPECT (G-SPECT), and 38% (21–48%) by cMRI. One 
hour after transcoronary cell delivery, myocardial activity 
uptake was 1.7% to 9.9% (median 5.2%). Total infarct 
mass (cMRI) was 57 [11–112] g.

Cell label myocardial uptake (whole-body γ-scans) 
was proportional to IS (r = 0.62), with a  median 2.9% 
uptake in IS 1st tercile (≤ 45 g), 5.2% in 2nd (46–76 g), 
and 6.7% in 3rd (> 76 g) (p = 0.0006). At 24 months EDV 
increased by a median 7.7 ml whereas ESV decreased by 
a median 6.0 ml. ∆ESV and ∆EDV in each IS tercile are 
depicted in Figure 1. There was no statistically significant 
relationship between IS and ∆ESV (p = 0.41) or between 

Table I. Clinical characteristics of studied patients 

Variable Value median, 
(range)  

or proportion

Number of patients, n 31

Age [years] 58 (36–69)

Time from the onset of symptoms to pPCI [h] 6 (3–13)

Infarct-related artery = proximal LAD, n (%) 31 (100)

Peak CK-MB [IU/l] 584 (181–962) 

Peak troponin I [ng/ml] 137 (58.3–356)

Hypertension, n (%) 14 (45.2)

Diabetes mellitus, n (%) 7 (22.6)

Hyperlipidaemia, n (%) 26 (83.9)

Smoking (history or current), n (%) 16 (51.6)

BMI > 30 kg/m2, n (%) 2 (6.4)

eGFR < 90 ml/min/m2 8 (25.8)

pPCI to cell transfer [days] 10 (7–12)

LVEF by echocardiography* (%)  37 (23–44)

LVEF by G-SPECT* (%) 34 (17–48)

LVEF by cMRI* (%) 38 (21–48)

Myocardial uptake of cell label# (%) 5.2 (1.7–9.9)

*Qualifying values 24–48 h prior to cell delivery. #60 min after cell administra-
tion. pPCI – primary percutaneous coronary intervention, LAD – left anterior 
descending artery, CK-MB – creatine kinase-myocardial band, BMI – body mass 
index, eGFR – estimated glomerular filtration rate, LVEF – left ventricular ejec-
tion fraction, G-SPECT – gated single-photon emission computerized tomogra-
phy, cMRI – cardiac magnetic resonance imaging.

Figure 1. Relationship between infarct mass at baseline, cell uptake, and long-term LV adverse remodelling. 
Infarct size (IS) is categorized by terciles of infarct mass; ≤ 45 g (1st tercile), 46–76 g (2nd tercile), and > 76 g  
(3rd tercile); median cell label myocardial uptake by respective IS terciles is provided in parenthesis in the bot-
tom line. Left panel shows ∆ESV at 24 months by the IS and cell uptake whereas ∆EDV at 24 months by the 
IS and cell uptake is demonstrated in the right panel. Note lack of a statistically significant increase in ∆ESV 
and ∆EDV at 24 months in relation to IS. As IS is a fundamental determinant of ∆ESV and ∆EDV [15–18, 28],  
this finding suggests that progenitor cells, attracted to the infarct zone in relation to the IS, may attenuate the 
adverse effect of IS on LV remodeling
ESV – end-systolic volume, EDV – end-diastolic volume, ∆ – change, MRI – cardiac magnetic resonance imaging, SPECT – single photon emission computed 
tomography.
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IS and ∆EDV (p = 0.09), suggesting that the cell uptake 
in proportion to IS may have abolished the effect of IS on 
ΔESV and attenuated the effect of IS on ΔEDV. 

At baseline, median mCS was –12.1% in IS 1st tercile; 
–7.4% in 2nd tercile, and –8.3% in 3rd tercile (p = 0.04, 
more severe contractility impairment in the 2nd and 3rd IS 
tercile than in the 1st IS tercile, Figure 2 A). cMRI follow-up 
at 24 months showed mCS medians of, respectively, 
–15.45%;–13.3% and –9.55% (p = 0.14, indicating atten-
uation of the effect of IS, Figure 2 B). At 24 months, mCS 
improved in IS 2nd tercile (p = 0.028) while it revealed no 
significant change in smaller (p = 0.87) or larger infarcts 
(p = 0.58) (Figure 3). 

Discussion
The principal findings from this largest study to date 

evaluating the relationship between IS, progenitor cell 
uptake, and the magnitude of LV remodelling in patients 
receiving transcoronary administration of progenitor 
cells shortly after MI, suggest the following: (1) stem cell 
uptake, proportional to IS, may attenuate the established 
effect of IS on ∆ESV [16, 28] and may inhibit the estab-
lished effect of IS on ∆EDV [15, 17, 18, 28] (Figure 1), and 
(2) cell therapy with autologous CD34+/CD34+ CXCR4+ 
cells may improve LV systolic function (expressed by mCS 
strain on cMRI), in particular the medium tercile of large 
infarcts (Figure 3).
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Figure 2. Relationship between infarct mass at baseline, cell uptake, and peak systolic circumferential strain 
at baseline (A) and 24-month follow-up (B). Infarct size (IS) is categorized by terciles of infarct mass; ≤ 45 g  
(1st tercile), 46–76 g (2nd tercile), and > 76 g (3rd tercile). Median cell label myocardial uptake by respective IS 
terciles is provided in parentheses in the bottom line. Figure 2 A shows peak systolic circumferential strain 
at baseline (< 24 h before cell administration) in mid segments (infarct zone). Note a statistically important 
difference in peak systolic circumferential strain between the terciles (p = 0.04); consistent with a relationship 
between infarct size and circumferential strain (i.e. the larger the infarct, the worse the myocardial strain). Fig-
ure 2 B shows peak systolic circumferential strain at 24 months (< 24 h before cell administration), in mid seg-
ments, inside the infarct zone. Note the lack of a statistically significant difference between the peak systolic 
circumferential strain terciles (p = 0.14), suggesting attenuation of the effect of IS on contractility deterioration 
as expressed by the strain
MRI – cardiac magnetic resonance imaging, SPECT – single photon emission computed tomography.

Figure 3. Relationship between the baseline and 
24-month follow-up peak systolic circumferential 
strains in mid segments (infarct zone). Infarct 
size (IS) is categorized by terciles of infarct mass;  
≤ 45 g (1st tercile), 46–76 g (2nd tercile), and > 76 g  
(3rd tercile). Note a significant improvement of 
strain in 2nd tercile of IS (p = 0.028), which may 
suggest a beneficial impact of progenitor cell ad-
ministration, which is particularly relevant in this 
subgroup
MRI – cardiac magnetic resonance imaging, SPECT – single photon 
emission computed tomography.
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p = 0.028 p = 0.58
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IS, measured preferably by cMRI, is a well-established 
determinant of adverse LV remodelling after myocardial 
infarction [15–18, 29]. Marked LV remodelling, despite its 
role in maintaining overall stroke volume, leads to clini-
cal heart failure presentation in a large proportion of pa-
tients. IS is also prognostic of adverse clinical outcomes, 
an effect significant also in multivariate analysis [16, 29], 
and it is a predictor of follow-up LVEF [16]. On the other 
hand, it is important to realize that IS, as derived from 
cMRI late gadolinium enhancement (LGE), does not nec-
essarily equate with irreversible injury because it recedes 
over time [30]. Some parameters other than the base-
line infarct size by cMRI-LGE may add an incremental 
prognostic value [23]. Recently, increasing evidence has 
emerged on the role of myocardial deformation parame-
ters such as strain, which is reflective of myocardial fibre 
shortening [23]. Strain can be evaluated on echocardiog-
raphy or, more reproducibly, on cMRI [20]. Circumferential 
strain (CS) measured by feature tracking technique is an 
important modern parameter of LV systolic function [20]. 
CS is at least equal (and it may be superior) to traditional 
cMRI measures in the assessment of cardiac regenerative 
therapy [22] because it may help to evaluate segmental 
improvement [31] and late myocardial remodelling [32]. 
Some [33] (though not all [34]) authors argue that CS 
may provide an additional long-term prognostic value in 
STEMI patients and improve risk reclassification beyond 
traditional cMRI indexes. One advantage of this method 
is the absence of the need for administration of contrast 
agent [35]. Our findings (Figure 2) suggest that stem cell 
therapy may improve LV systolic function (as measured 
by mCS) particularly in medium-size infarctions. To-date, 
data on cMRI strain analysis in cell therapy trials are lim-
ited [21]; thus, our study adds significantly to the existing 
body of evidence. 

The therapeutic effect of stem cells is based on myo-
cardial uptake as a primary requirement for any thera-
peutic action [6, 11, 13, 14, 36, 37]. Dill et al. [38] indi-
cated that autologous bone marrow cell administration 
shortly after STEMI improved LVEF, reduced EDV, and 
abrogated ESV increase after 12 months, particularly 
in patients with lower LVEF values (larger infarcts). In 
a  recent meta-analysis, transcoronary transplantation 
of bone marrow progenitor cells was safe and induced 
a significant increase in LVEF with a trend towards ESV 
reduction and fewer cardiac adverse events [39]. Never-
theless, myocardial uptake of bone marrow cells appears 
to be, overall, rather low (median of 5.2% in our study, 
ranging from ≈2.1% to 9.2% in other studies) [40, 41]. It 
is therefore important, as a future research direction, to 
evaluate therapeutic potential of other cell types, partic-
ularly those that exhibit retention in the ischaemic injury 
zone [42, 43] greater than bone marrow cells [4].

There is ample evidence on the relationship between 
baseline infarct size and follow-up ejection fraction [28, 
44] and adverse remodelling [18, 28], especially in pa-

tients with larger infarcts [17, 29]. Infarct size, in the 
absence of cell therapy, is also a  stronger predictor of 
all-cause mortality than LVEF and LV volumes [45]. Our 
present study indicates that with stem cell uptake in 
proportion to IS, IS may no longer be a determinant of 
the magnitude of LV adverse remodelling after infarction, 
consistent with a potential role of stem cells in enhanc-
ing myocardial repair in recent STEMI. 

Despite being the largest to-date study with labelled 
progenitor cell transplantation shortly after STEMI in 
humans, our overall patient volume may be considered 
moderate. Thus, larger studies are required to corroborate 
our present findings. Furthermore, while there is no doubt 
that a parallel sham/placebo comparative cohort would 
be desirable [8, 46], the sample size in our study of la-
belled cells did not justify a control sham/placebo group. 

Conclusions
This largest human study with labelled CD34+ cell 

transplantation shortly after MI suggests that the cell 
uptake, occurring in relation to IS, may attenuate the ef-
fect of IS on LV adverse remodelling. To boost this effect, 
further strategies should involve cell types and delivery 
techniques maximizing myocardial uptake.
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